AOS MEUS ALUNOS DO PRÉ-VESTIBULAR QUILÔMBO ILHA Prof. Anchieta Pinheiro

PROF. ANCHIETA PINHEIRO - QUÍMICO INDUSTRIAL e MATEMÁTICO

A humanidade conheceu um lenhador vindo de uma familia humilde do condado de Hardin nos EUA que:Faliu no comércio aos 31 anos de idade.Perdeu para Estadual aos 32.Faliu novamente no comércio aos 34.Aos 35, sua esposa faleceu.Teve colapso nervoso aos 36.Perdeu a disputa para Prefeito aos 38.Perdeu para Federal aos 43.Perdeu para Estadual aos 46.Perdeu para Federal novamente aos 48.Perdeu para Senador aos 55.Perdeu para Vice-Presidente aos 56.Perdeu para Senador aos 58 Foi eleito Presidente dos EUA aos 60.Este homem foi Abraham Lincoln, um homem como qualquer outro que Em 22 de Setembro de 1862 publicou a proclamação que concedia a liberdade aos escravos dos Estados Confederados. Aos olhos das outras nações, a libertação deu um novo sentido à Guerra e abriu caminho para a abolição da escravatura em todo o país, em 1865.
Não percam seus ideais.
"Ando devagar, mas nunca ando para trás."--Abraham Lincoln

domingo, 17 de fevereiro de 2013


Aos meus queridos  alunos do Quilombo Ilha

Estamos começando uma nova jornada para o ano de 2013.

Estou pronto para acompanhar a nossa aprendizagem, a qual será muito útil para mim e para vocês.

Tudo o que um sonho precisa para ser realizado é alguém que acredite que ele possa ser realizado


PROF. ANCHIETA PINHEIRO - PRÉ-VESTIBULAR QUILÔMBO ILHA 

ESTRUTURA DA MATÉRIA

A matéria tem 8 propriedades gerais, isto é, 8 características comuns a toda e qualquer porção de matéria: inércia, massa, extensão, impenetrabilidade, compressibilidade, elasticidade, divisibilidade e descontinuidade.

- Inércia:
A matéria conserva seu estado de repouso ou de movimento, a menos que uma força aja sobre ela. No jogo de sinuca, por exemplo, a bola só entra em movimento quando impulsionada pelo jogador, e demora algum tempo até parar de novo.

- Massa:
É uma propriedade relacionada com a quantidade de matéria e é medida geralmente em quilogramas. A massa é a medida da inércia. Quanto maior a massa de um corpo, maior a sua inércia. Massa e peso são duas coisas diferentes. A massa de um corpo pode ser medida em uma balança. O peso é uma força medida pelos dinamômetros.

- Extensão:
Toda matéria ocupa um lugar no espaço. Todo corpo tem extensão. Seu corpo, por exemplo, tem a extensão do espaço que você ocupa.

- Impenetrabilidade:
Duas porções de matéria não podem ocupar o mesmo lugar ao mesmo tempo. Comprove a impenetrabilidade da matéria: ponha água em um copo e marque o nível da água com esparadrapo. Em seguida, adicione 3 colheres de sal. Resultado: o nível da água subiu. Isto significa que duas porções de matéria (água e sal), não podem ocupar o mesmo lugar no espaço (interior do copo) ao mesmo tempo.

- Compressibilidade:
Quando a matéria está sofrendo a ação de uma força, seu volume diminui. Veja o caso do ar dentro da seringa: ele se comprime.

- Elasticidade:
A matéria volta ao volume e à forma iniciais quando cessa a compressão. No exemplo anterior, basta soltar o êmbolo da seringa que o ar volta ao volume e à forma iniciais.

- Divisibilidade:
A matéria pode ser dividida em partes cada vez menores. Quebre um pedaço de giz até reduzi-lo a pó. Quantas vezes você dividiu o giz !?

- Descontinuidade:
Toda matéria é descontínua, por mais compacta que pareça. Existem espaços entre uma molécula e outra e esses espaços podem ser maiores ou menores tornando a matéria mais ou menos dura.

Propriedades Específicas da Matéria

- organolépticas:
a)cor: a matéria pode ser colorida ou incolor. Esta propriedade é percebida pela visão;
b)brilho: a capacidade de uma substância de refletir kluz é a que determina o seu brilho. Percebemos o brilho pela visão;
c)sabor: uma substância pode ser insípida (sem sabor) ou sápida (com sabor). Esta propriedade é percebida pelo paladar;
d)odor: a matéria pode ser inodora (sem cheiro) ou odorífera (com cheiro). Esta propriedade é percebida pelo olfato;

- físicas:
Entre as propriedades físicas encontram-se o ponto de fusão, o ponto de ebulição e o calor específico, mas vamos estudar outras duas propriedades:

a)densidade: é o resultado da divisão entre a quantidade de matéria 'massa) e o seu volume. A densidade absoluta de um corpo é igual a m/v. Se a massa é medida em gramas e o volume em cm cúbicos, a densidade é obtida em gramas por cm cúbicos. Ex: Qual a densidade de um corpo que tenha massa de 200 g e está ocupando um volume de 2000 cm cúbicos ? É de 0.1 g/cm cúbico.

b)dureza: é a resistência que a superfície de um material tem ao risco. Um material é considerado mais duro que o outro quando consegue riscar esse outro deixando um sulco. Para determinar a dureza dos materiais, usamos uma escala de 1 a 10. O valor um corresponde ao mineral menos duro que se conhece, o talco. O valor 10 é a dureza do diamante, o mineral mais duro que se conhece.

Estados Físicos da Matéria
A matéria se apresenta em 3 estados físicos:sólido, líquido e gasoso.

- sólido:
No estado sólido, o corpo tem forma e volume definidos. A matéria em estado sólido pode se apresentar compacta, em pedaços ou em pó. Os corpos são formados pela reunião de moléculas, e entre as moléculas desenvolvem-se duas forças: coesão (força que tende a aproximar as moléculas entre si) e repulsão (força que tende a afastá-las umas das outras. No estado sólido, a força de coesão é muito forte. Por isso, o movimento das moléculas é pequeno e elas apenas vibram.

- líquido:
No estado líquido, a matéria tem forma variável e volume definidos. As moléculas tem menos força de coesão do que nos sólidos. Por isso, elas se deslocam mais.


- gasoso:
No estado gasoso, a matéria tem forma e volume variáveis. Nos gases, as moléculas se movem livremente e com grande velocidade. A força de coesão é mínima e a de repulsão é enorme.

Mudanças no Estado da Matéria


- fusão:
É a passagem do estado sólido para o líquido. Quando fornecemos calor a um corpo, suas partículas vibram mais. A uma determinada temperatura, as partículas do sólido vibram com tanta intensidade que algumas chegam a vencer a força de coesão e passar ao estado líquido. Isso chama-se fusão. Cada substância tem sua temperatura de fusão característica a uma determinada pressão. Essa temperatura chama-se ponto de fusão.

- solidificação:
É a passagem do estado líquido para o sólido. Quando se resfria um corpo, suas moléculas vibram menos. a uma determinada temperatura, as substâncias líquidas transformam-se em sólidas porque a força de coesão aumenta e a agitação molecular diminui. Essa temperatura, o ponto de solidificação, é igual à temperatura do ponto de fusão dessa mesma substância.
- vaporização:
É a passagem do estado líquido para o gasoso. Pode ocorrer por evaporação (passagem lenta e espontânea estimulada pela temperatura, ventilação e superfície de evaporação), ebulição (passagem com grande agitação molecular e a formação de bolhas) e calefação (passagem brusca).

- condensação:
Também chamada liquefação, é a passagem do estado gasoso para o estado líquido.
- sublimação:
É a passagem direta do estado sólido para o gasoso ou vice-versa.

 

TRANSFORMAÇÕES QUÍMICAS E FÍSICAS

As Transformações Químicas ocorrem sempre que há formação de novos materiais, ou seja, a partir dos materiais iniciais formam-se outros materiais diferentes. Ocorre uma transformação química quando...

- ... se forma um sólido de cor diferente;

- ... há mudança de cor da solução;

- ... se forma um gás;

- ... há variação de temperatura do sistema;

- ... as substâncias iniciais desaparecem;

- ... se origina um cheiro característico.

São Exemplos de Transformações Químicas...

- ... a Respiração Celular que ocorre nos seres vivos

As transformações físicas da matéria ocorrem quando há por exemplo mudança de estado físico de um determinado material ou uma dissolução de um soluto num solvente. Neste tipo de transformação, não há formação de novas substâncias. É exemplo de uma Transformação Física...

Mudança de estado físico, objeto que parte, dissolução etc.

 

SUBSTANCIA SIMPLES E COMPOSTA

As substâncias puras são aquelas formadas por apenas uma variedade de molécula. Ou seja, todas as moléculas são iguais. Por conta disso, possuem ponto de fusão, solidificação, ponto de ebulição constantes, e sua composição é bem definida.

Substância pura simples


As substâncias puras simples são formadas por apenas um elemento químico. Por exemplo, o gás Nitrogênio é composto apenas por átomos N:



Outros exemplos: H2, O2, O3 (ozônio), Fe, Al

Substância pura composta


Já as substâncias puras compostas podem ter vários elementos químicos diferentes na mesma molécula.

Por exemplo, a água pura contém apenas moléculas H2O, mas como sabemos, é formada pelos elementos químicos Hidrogênio e Oxigênio:

Outros exemplos: CO, NaCl, H2SO4, H2S

Essas substâncias podem originar sistemas homogêneos e heterogêneos:

Sistema homogêneo


Apresenta apenas uma fase, que pode ser visualmente identificada. Exemplo: copo de água líquida

Sistema heterogêneo

Pode apresentar mais de uma fase, como um copo de água com gelo (lembrando que tudo que está no copo ainda é água, apenas em estados físicos diferentes).


MISTURAS

Mistura é um sistema formado por duas ou mais substâncias puras, chamadas componentes.
As misturas podem ser classificadas em homogêneas e heterogêneas. A diferença entre elas é que a mistura homogênea é uma solução que apresenta uma única fase enquanto a heterogênea pode apresentar duas ou mais fases. Fase é cada porção que apresenta aspecto visual uniforme.
Existe uma diferença entre solução e composto, as soluções não têm composição fixa como a dos compostos, ou seja, as quantidades de cada elemento presentes nas soluções podem variar e estar em qualquer proporção.

Exemplos de misturas homogêneas: as águas salgadas, o ar, apresentam uma única fase. A água do mar contém, além de água, uma quantidade enorme de
sais minerais. O ar é uma mistura de nitrogênio e oxigênio que apresenta aspecto homogêneo.

Exemplos de misturas heterogêneas: água e óleo, granito. A água e o óleo não se misturam, sendo assim, é um sistema que apresenta duas fases e cada uma é composta por uma substância diferente. O granito é uma pedra cuja composição é feita por uma mistura heterogênea de quartzo, feldspato e mica, podemos ver pela diferença de cor de cada pedra.


 

MÉTODOS DE SEPARAÇÃO DAS MISTURAS

Peneiração


Na peneiração separa-se grãos menores de maiores com o auxílio de uma peneira (conhecido também como tamis). Os grãos maiores ficam retidos na peneira e os menores passam pela malha. Ex.: grãos de feijão e batata


Ex:areia grossa da areia fina


Levigação é um método de separação de sistemas heterogêneos de sólidos. Quando uma mistura se forma por substâncias sólidas de densidades diferentes, pode-se utilizar uma corrente de água para separá-las. É o caso do ouro, que nos garimpos normalmente é encontrado junto a uma porção de terra ou areia.Usa-se uma rampa de madeira ou uma bacia em que se passa uma corrente de água que serve para separar essas substâncias.

Ex: ouro com terra ou areia, e a água e o sal.

Através da centrifugação se busca aumentar a solubilidade de decantação com um aparelho chamado centrífuga ou centrifugador (que faz com que o sistema contido no tubo decante seja mais rápida). Esta máquina pode ser usada, por exemplo, na separação de glóbulos vermelhos do plasma sanguíneo ou para separar a nata do leite. Então a separação fica muito densa. Assim a substância fica retida na parede onde após é extraída e serve para separar materiais de densidades diferentes.

A decantação é um processo de separação que permite separar sistemas heterogêneos. É utilizada principalmente em diversos sistemas bifásicos como sólido-água (areia e água), sólido-gás (poeira-gás), líquido-líquido (água e óleo) e líquido-gás (vapor d’água e ar). Exemplo: temos uma mistura A e ao esperar um tempo vimos que a parte mais densa se sedimentou, ou seja, se depositou no fundo do recipiente, separando-se da fase líquida, que pode, então, ser transferida.

Dissolução fracionada é uma técnica ou método de processo de separação para separar sistemas heterogêneos de dois ou mais sólidos, quando apenas um dos componentes se dissolve em um dado solvente. Pois, assim, o líquido dissolve esse componente e, por filtração, separa-se o outro componente; como exemplo, água com areia e sal.

A evaporação é um fenômeno no qual átomos ou moléculas no estado líquido (ou sólido, se a substância sublima) ganham energia suficiente para passar ao estado vapor.

O movimento térmico de uma molécula de líquido deve ser suficiente para vencer a tensão superficial e evaporar, isto é, sua energia cinética deve exceder o trabalho de coesão aplicado pela tensão superficial à superfície do líquido. Por isso, a evaporação acontece mais rapidamente a altas temperaturas, a altas vazões entre as fases líquida e vapor e em líquidos com baixas tensões superficiais (isto é, com pressões de vapor mais elevado).

Exemplos: suor ou transpiração e o sal de onde é extraído das salinas, por meio de evaporação

Para separar a mistura de água e sal e recuperar também a água, emprega-se a destilação simples. A mistura é aquecida e a água entra em ebulição, mas o sal ainda não. O vapor de água passa pelo interior de um condensador, que é resfriado por água corrente. Com esse resfriamento, o vapor condensa-se. A água liquida, isenta de sal, é recolhida no recipiente da direita e, ao final, restará sal sólido no frasco da esquerda.

O líquido purificado que é recolhido no processo de destilação, recebe o nome de destilado.

Ex: água e sal.

Os sistemas homogêneos formados por dois ou mais líquidos oferecem uma razoável dificuldade para sua separação. A técnica da destilação fracionada pode ser usada com sucesso para separar algumas misturas desse tipo. É uma técnica complexa e sobre ela vamos apresentar apenas uma breve noção.

A destilação fracionada é um aprimoramento da destilação simples, na qual uma coluna de vidro cheia de obstáculos é colocada entre o condensador e o balão na qual a mistura é aquecida.

Os obstáculos permitem que o componente de menor ponto de ebulição chegue mais rapidamente ao condensador e destile primeiro. Assim que ele destilar totalmente, destilará o próximo componente líquido da mistura, que é recolhido em outro frasco.

A catação é um tipo de separação manual de sistemas do tipo "sólido-sólido". As substâncias são separadas manualmente e pode utilizar uma pinça, colher, ou outro objeto auxiliador para a separação. É utilizada na separação de grãos bons de feijão dos carunchos e pedrinhas. Também é utilizada na separação dos diferentes tipos de materiais que compõem o lixo como vidro, metais, borracha, papel, plásticos que para serem destinados a diferentes usinas de reciclagem.

A flotação consta em separar sistemas heterogêneos sólidas com densidades diferentes através de uma densidade intermediária, nesse caso o mais comum e mais utilizado, é a água. A flotação é um método de separação de misturas. Trata-se de uma técnica de separação muito usada na indústria de minerais, na remoção de tinta de papel e no tratamento de esgoto, entre outras utilizações. A técnica utiliza diferenças nas propriedades superficiais de partículas diferentes para as separar. As partículas a serem flotadas são tornadas hidrofóbicas pela adição dos produtos químicos apropriados. Então, fazem-se passar bolhas de ar através da mistura e as partículas que se pretende recolher ligam-se ao ar e deslocam-se para a superfície, onde se acumulam sob a forma de espuma. Resumindo, a flotação é um processo de separação de sólido-líquido, que anexa o sólido à superfície de bolhas de gás fazendo com que ele se separe do líquido do sólido.

Ventilação é um processo de separação de substâncias sólidas heterogêneas através de vento. O sólido menos denso é separado por uma corrente de ar. Também conhecido como tamisação, este método é também usado na separação de sistemas sólido-sólido, onde um dos dois componentes apresente granulometria que permita que o mesmo fique preso nas malhas de uma peneira.

sábado, 16 de fevereiro de 2013

UMA TEÓRICA DOS METEORITOS

O radiante e a nomenclatura
Carta celeste em que é mostrado o radiante de uma chuva de meteoros.
Posição do radiante da chuva de meteoros Perseidas a partir dos traços de dois meteoros.
Como os detritos que formam a chuva de meteoros estão viajando em órbitas quase paralelas,[nota 1] quando entram na atmosfera formam riscos de luz que parecem estar se originando de um mesmo ponto por causa do efeito de perspectiva.[4] Esse ponto é o radiante. Esse efeito pode ser comparado aos trilhos de uma ferrovia longa e retilínea, os quais parecem se fundir no horizonte. O radiante, assim como as estrelas, também apresenta um movimento aparente por causa da rotação da Terra. A posição do radiante também varia um pouco de uma noite para outra por causa do movimento de translação do planeta.[5]
As chuvas de meteoros são nomeadas de acordo com o nome da constelação na qual se localiza o radiante.[6] Quando há mais de uma chuva de meteoros associada a uma mesma constelação, o nome é dado de acordo com a estrela mais próxima do radiante no pico da chuva. A desinência da forma possessiva do latim é substituída por "id" ou "ids" em inglês e por "ídeos" ou "idas" em português. Por exemplo, a chuva de meteoros cujo radiante está próximo da estrela Delta Aquarii (note a desinência possessiva "i") é chamada Delta Aquarids em inglês e Delta Aquarídeos (ou Delta Aquáridas) em português. Um grupo da União Astronômica Internacional monitora as chuvas de meteoros para determinar qual o nome de cada uma.[5][7]

[editar] Origem das chuvas de meteoros

Uma chuva de meteoros é o resultado da interação entre um planeta, como a Terra, e o rastro de detritos produzido por um cometa ou asteroide. Os cometas podem produzir detritos de duas formas. A primeira é pelo arrastamento de partículas pelo vapor que se desprende do cometa quando este se aproxima do Sol. Segundo um estudo que Fred Whipple publicou em 1951,[8] os cometas são imensas "bolas de neve sujas", formadas por rochas e envolvidas em gelo que orbitam o sol. Esse gelo pode ser de água, metano, amônia ou outros compostos voláteis[nota 2] sozinhos ou em combinação. Geralmente as rochas do cometa são fragmentadas, sendo partículas menores (como grãos de areia) mais comuns que outras maiores (como pequenas pedras, por exemplo).[9] Quando o cometa se aproxima do Sol, o calor faz com que os compostos voláteis sublimem, criando várias ejeções de vapor que arrastam as partículas de rochas presentes no meio do gelo. Essas rochas ficam, então, na mesma órbita do cometa e são chamados de meteoroides. Os gases liberados do cometa, no entanto, são dispersados pela radiação solar, restando apenas a trilha de meteoroides.[10]
Trilha de meteoroides deixada pelo cometa 73P/Schwassmann-Wachmann em infravermelho. Note a diferença com a cauda do cometa.
A segunda forma foi descoberta recentemente, por Peter Jenniskens, que argumentou que a maior parte das chuvas de meteoros de curta duração não vêm da forma normal (quando as partículas são arrastadas pelo vapor de água), mas do produto de raras desintegrações, quando saem pedaços de um cometa dormente ou asteroide. Exemplos são as chuvas de meteoros Quadrantídeas e Gemínidas, que surgiram, respectivamente, da fragmentação dos asteroides 2003 EH1 e 3200 Faetonte cerca de 500 a 1000 anos atrás. Os fragmentos tendem a se desintegrar rapidamente em poeira, areia e pequenas pedras, e se espalhar ao longo da órbita do cometa para formar uma densa trilha de meteoroides, que subsequentemente cruza com a órbita da Terra.[10]

[editar] Evolução das trilhas de meteoroides

Pouco depois de Whipple predizer que partículas de poeira viajavam com velocidades menores em relação ao cometa, Milos Plavec foi o primeiro a propor o conceito de trilha de poeira, quando ele calculou como os meteoroides, uma vez liberados do cometa, poderiam se mover à frente ou atrás do cometa. O efeito é uma simples mecânica orbital - o material se afasta somente um pouco para lateral do cometa enquanto se movem a frente ou atrás deste porque algumas partículas fazem uma órbita mais extensa que outras. Estas trilhas de poeira são às vezes observadas em imagens dos cometas no comprimento de onda infravermelho (radiação do calor), onde partículas da aproximação anterior do Sol são espalhadas ao longo da órbita do cometa.[11]
O empurrão gravitacional dos planetas determina onde as trilhas de poeira passarão pela órbita da Terra, semelhante a um jardineiro direcionando o jato de água de uma mangueira para uma planta distante. Na maioria dos anos, essas trilhas não atingem o planeta completamente, mas em algumas vezes é atingida por milhares de meteoroides de uma vez. Este efeito foi demonstrado em observações da chuva de meteoros Alpha Monocerotis[11] e de identificações menos conhecidas de tempestades de meteoros passados.[12]

[editar] Cometas de curto e médio período

Órbitas da Terra, de Júpiter e do cometa Encke.
Por meio de observações realizadas em infravermelho, as trilhas de poeira são detectadas em órbitas de cometas de curto período (menor que 20 anos). Essa trilha tende a ser menos influenciada pela ação gravitacional dos planetas gigantes, visto que suas órbitas não interceptam a desses planetas. Entretanto a maior proximidade com o Sol faz com que as partículas fiquem mais dispersas por causa da radiação solar que empurra as partículas. Essa trilha vai ficando, então, mais larga.[13] Em cometas da família jupiteriana[nota 3] a poeira tende a ser menos uniforme por causa da influência gravitacional do planeta gigante, e isso cria lacunas e amontoados de meteoroides.[14]
As chuva de meteoros Taurídea, por exemplo, é causada pelo cometa Encke, que tem um período de 3,31 anos. Por causa da proximidade de sua órbita com a órbita de Júpiter, a trilha de meteoroides foi dividida em duas, e por isso essa chuva tem dois picos de atividade anualmente.[15]
Órbitas da Terra e do cometa Tempel-Tuttle. No dia 17 de novembro de 2012 a Terra cruzou com os rastros de detritos do cometa, e isso dá origem à chuva de meteoros Leônidas.
Os cometas de médio período ou período intermediário possuem um período de translação de 20 a 200 anos e alta inclinação.[16] Esse tipo de cometa produz um rastro de poeira que possui a mesma órbita do próprio, mas tem lacunas e amontoamentos de meteoroides que são criados pela influência gravitacional dos planetas gigantes. Esses amontoamentos possuem o mesmo período orbital do cometa e, portanto, atingem a Terra em períodos determinados que coincidem com o período do cometa. Quando isso acontece, formam-se os surtos e as tempestades de meteoros que podem ser um pouco atrasadas ou adiantadas, mais intensas ou menos intensas, tudo depende da posição dos planetas gigantes.[17]
O cometa 55P/Tempel-Tuttle, que tem um período de 33 anos e causa a chuva de meteoros Leônidas intercepta a órbita da Terra quase exatamente e os amontoados de meteoroides criados pelos planetas gigantes atingem nosso planeta em cheio, causando intensas tempestades de meteoros a cada 33 anos.[18]

[editar] Cometas de longo período

Para os cometas de longo período, as trilhas de poeira podem estar em caminhos mais "complicados". Um dos efeitos é que as órbitas de alguns cometas periódicos e alguns meteoroides que o deixam, estão em órbitas ressonantes com Júpiter ou outro planeta gigante - ou seja, muitas revoluções de um equivale a outro número de revoluções de outro. Então, como Júpiter vai ter sempre a mesma posição relativa em sua órbita, isso tende a empurrar os meteoros para manter a mesma posição relativa. Isto cria um componente de uma chuva de meteoros chamado "filamento". Esses filamentos podem ser direcionados para o interior do sistema solar por meio da influência gravitacional dos planetas gigantes.[19]
Um segundo efeito é um encontro próximo a um planeta. Quando os meteoroides passam pela Terra, alguns são acelerados (formando órbitas mais extensas ao redor do Sol), e outros são desacelerados (formando órbitas mais curtas) resultando em lacunas na trilha de poeira. Também a perturbação gravitacional de Júpiter pode mudar as secções da trilha de poeira drasticamente, especialmente em cometas com períodos mais curtos, quando os grãos de poeira se aproximam do planeta no ponto mais distante da órbita em torno do sol (afélio), movendo-se mais devagar. Como resultado, a trilha tem alguns amontoamentos e lacunas em cada liberação de material pelo cometa.[20] Por isso, em chuvas desse tipo, surtos de meteoros, ou seja, uma atividade subitamente aumentada, podem ocorrer durante alguns minutos ou horas.[21]
O terceiro efeito é aquele da pressão de radiação, que empurra as partículas menores em órbitas mais distantes enquanto os objetos maiores (que criam os bólidos ou bolas de fogo quando entram na atmosfera da Terra) tendem a ser menos afetados por essa pressão. Isto faz algumas trilhas de poeira serem ricas em meteoros brilhantes enquanto outras tem meteoros mais "fracos". Depois de um certo tempo, estes efeitos dispersam os meteoros e criam uma corrente mais ampla. Os meteoros que vemos dessas correntes são partes de chuvas de meteoros anuais, porque a Terra encontra essas correntes todo ano.[22]
Um exemplo desse tipo de chuva de meteoros é a Alfa-Monocerotídeos. Em 22 de novembro de 1995, aconteceu um surto dessa chuva que havia sido previsto anteriormente com base nos registros de um surto ocorrido em 1935. A posição de Júpiter e Saturno seria parecida com aquela de 1935, o que faria com que a Terra fosse novamente atingida por meteoroides como naquela ocasião, o que de fato aconteceu. A detecção e análise de trilhas de meteoros de cometas de longo período pode auxiliar na descoberta de um cometa que pode ter certo risco de colisão com a Terra.[23]
Quando os meteoroides colidem com outros objetos na nuvem zodiacal, eles perdem a associação com as correntes e se tornam meteoritos esporádicos. Uma vez dispersados da corrente em que estavam, os meteoroides ficam isolados e portanto não pertencem mais a nenhuma chuva de meteoros. Esses meteoros não vão parecer surgir de nenhum radiante predeterminado, visto que estão sozinhos.[23]

[editar] História

Chuva de meteoros Leônidas em 1833.
Chuvas de meteoros são eventos que despertam a curiosidade humana desde o início da humanidade e isso é evidenciado por muitos registros e histórias que fazem referência a diversas chuvas de meteoros. O registro mais antigo da chuva de Perseidas, por exemplo, data do ano de 36 D.C., feito por astrônomos chineses.[24] Leônidas foi a chuva de meteoros mais intensa nos últimos séculos, responsável por grandes eventos que surpreenderam pela quantidade de meteoros observada.[25]
Aliás, em relação à Perseidas foram feitos vários relatos por astrônomos chineses e coreanos entre os séculos VIII e XI, e depois disso foram feitas somente referências esporádicas citando a atividade de meteoros no mês de agosto. Essa chuva de meteoros foi chamada também de "lágrimas de São Lourenço" porque o pico coincidia com a festa desse santo na Itália.[24]
No ano de 868 D.C a órbita de um cometa até então desconhecido cruza pela primeira vez a órbita da Terra depois de mudanças graduais nos séculos anteriores. O rastro deixado por esse cometa causa, no ano de 902 D.C., a primeira chuva de meteoros Leônidas, que foi relatada por astrônomos chineses e observadores no Egito e na Itália. Alguns séculos depois, em 15 de novembro de 1630, morre o cientista Johannes Kepler e dois dias depois, no seu funeral, a chuva de meteoros Leônidas encheu o céu, o que foi considerado uma "saudação de Deus".[26]
Cerca de duas da madrugada fomos chamados pelo choro dos sinais nos céus. Despertamos, e para nosso espanto todo firmamento parecia envolvido em esplêndidos fogos [...]. Milhares de meteoros brilhantes caíam no espaço em todas as direções, com longos rastros de luz seguindo seus cursos. Isto durou várias horas, e só acabou quando os raios de sol iluminaram o céu [...].
Relato de Elder Parley P. Pratt, nos Estados Unidos em 1833.[27]
Nas noites de 10 a 13 de novembro de 1833, milhares de meteoros de Leônidas foram vistos cortando o céu. Eram tantos que esse dia ficou conhecido como "o dia em que as estrelas caíram".[28] As reações das pessoas foram variaram desde a histeria clamamdo o Dia do Julgamento até a alegria dos cientistas e astrônomos, que estimaram que cerca de mil meteoros por minuto emanavam da constelação de Leão. Jornais da época mostram que praticamente todos acordaram para ver o evento, seja por causa dos gritos de vizinhos espantados, seja por causa dos flashes de luz produzidos por bolas de fogo que iluminavam todo o céu. Essa noite marca o nascimento da astronomia de meteoros.[25][27]
Naquela época a natureza dos meteoros não era conhecida com certeza, e várias teorias foram propostas para explicar o fato. Uma delas explica como plantas mortas por congelamento liberaram gases graças à ação do sol. Esse gás, teoricamente hidrogênio, entrou em combustão por causa da eletricidade ou de partículas fosfóricas presentes na atmosfera. Outra teoria propunha que os ventos vindos do sul trouxeram ar eletrificado que, graças ao frio da madrugada, descarregaram sua eletricidade na terra. Mas foi D. Olmsted que descobriu a verdadeira natureza da chuva de meteoros. Depois de colher várias informações em observações e relatos, concluiu que os meteoros se originavam de uma nuvem de partículas no espaço.[25]
O interesse dos astrônomos nessa chuva de meteoros começou quando se previu que o retorno da chuva aconteceria em 1866, analisando-se os registros antigos das chuvas de meteoros. Realmente a chuva aconteceu naquele ano, e ficou constatado que uma grande atividade dessa chuva de meteoros acontece a cada 33 anos, embora a intensidade não tenha sido tão grande quanto aquela ocorrida em 1833, mas ainda assim foi bastante marcante. Em 1899 foi prevista outra chuva de meteoros extraordinária. A chuva aconteceu, mas não com a intensidade esperada, caracterizando o que C. P. Olivier chamou de "o pior golpe já sofrido pela astronomia aos olhos do público", pois era grande a expectativa de toda a população para ver tal evento celeste.[25]

[editar] Principais chuvas de meteoros

Meteoro da chuva de meteoros Perseidas (2009).
Existem dezenas de chuvas de meteoros catalogadas, mas somente algumas se destacam pela quantidade e pelas características dos meteoros que apresentam.

[editar] Perseidas

É a chuva de meteoros mais conhecida, pois sempre exibe uma grande quantidade de meteoros no seu pico, que ocorre entre 12 e 13 de agosto. Durante essas noites, a taxa horária varia entre cinquenta e oitenta meteoros. Para observadores no hemisfério sul, o radiante fica muito baixo ou até mesmo abaixo do horizonte, fazendo com que a quantidade de meteoros seja reduzida para cerca de dez a quinze meteoros por hora que parecem estar"saindo" do horizonte norte. O primeiro registro desta chuva foi feito pelos chineses em 36 d.C.. Cálculos feitos entre 1864 e 1866 pelo italiano G. V. Schiaparelli mostraram que os detritos responsáveis pela chuva de meteoros eram originados do cometa 109P/Swift-Tuttle, que fora descoberto em 1862.[24]

[editar] Leônidas

Meteoro da chuva de meteoros Leonidas (2009).
Essa chuva de meteoros, que ocorre entre 13 e 18 de novembro, com um pico máximo nas noites de 17 e 18 do mesmo mês, tem produzido algumas das mais intensas manifestações desse fenômeno na história. Geralmente exibe uma taxa horária de dez meteoros, mas a cada 33 anos aproximadamente acontece um aumento de atividade extraordinário, no qual podem ser vistos centenas ou até milhares de meteoros por hora. O último surto aconteceu entre 1998 e 2002. A noites de pico que ocorreram 1833, uma das mais marcantes da história, não só marcam a descoberta da origem das chuvas de meteoros mas também o nascimento da astronomia de meteoros, pois foi descoberta a periodicidade desse fenômeno. A chuva está associada com o cometa 55P/Tempel–Tuttle, com período também de aproximadamente 33 anos.[25]

[editar] Eta Aquárida

Todo ano, os primeiros meteoros dessa chuva podem ser vistos em 21 de abril e persistem até 12 de maio, sendo o pico nas noites de 5 e 6 de maio. No hemisfério sul os observadores podem ver cerca de trinta meteoros por hora, enquanto que no hemisfério norte somente dez meteoros. O radiante localiza-se na constelação de Aquário, e infelizmente isso faz com que a observação seja prejudicada, porque o radiante nasce somente cerca de uma hora antes dos primeiros raios de sol clarearem o céu. Os primeiros relatos dessa chuva são do século IX d.C. e seu radiante foi determinado em 1870. Os meteoros dessa chuva são conhecidos por deixarem rastros luminosos persistentes, que duram mais de um segundo. Em 1983 descobriu-se que a chuva estava associada ao Cometa Halley.[29]

[editar] Oriônidas

Essa chuva de meteoros também é causada pelos detritos do Cometa Halley. Na verdade essa é a segunda chuva de meteoros causada pelo cometa anualmente (a primeira é a Eta Aquárida) e ocorre geralmente entre 15 e 29 de outubro, e o pico ocorre entre os dias 20 e 22. A taxa horária no hemisfério sul é de cerca de quarenta meteoros, enquanto no hemisfério norte é de somente vinte. A primeira observação precisa desta chuva foi feita em 1864 e no ano seguinte foi confirmado o radiante na constelação de Órion.[30]

[editar] Gemínidas

Essa chuva ocorre entre 6 e 18 de dezembro, com o pico nos dias 13 e 14. No hemisfério norte durante os dias de pico podem ser observados entre cinquenta e oitenta meteoros por hora. Já no hemisfério sul essa taxa reduz-se para vinte meteoros por hora, visto que o radiante fica próximo do horizonte noroeste. O primeiro a constatar a localização do radiante dessa chuva foi o inglês R. P. Greg em 1862. Em 1983 descobriu-se que um asteroide, o 3200 Faetonte, movia-se numa órbita bastante próxima da trilha de meteoros responsável pela Gemínidas e logo depois constatou-se que esse corpo celeste estava diretamente relacionado à chuva de meteoros, sendo o primeiro asteroide identificado que está associado a esse tipo de fenômeno.[31]

[editar] Observação

Fotografia com exposição de quatro horas da chuva de meteoros Leônidas em 1998.
As chuvas de meteoros são um dos poucos eventos astronômicos que podem ser observados a olho nu. As condições para observação influenciam na quantidade de meteoros que podem ser vistos. A poluição luminosa, presença de nuvens e da Lua em suas fases mais luminosas, por exemplo, podem reduzir consideravelmente a quantidade de meteoros observados, pois o brilho dos meteoros mais fracos é ofuscado pelas fontes luminosas ou obstruídos por barreiras físicas. Devido à rotação da Terra, o melhor horário para observar uma chuva de meteoros é de madrugada, pois esta parte do planeta "colide" com os meteoroides no espaço, fazendo com que a frequência de meteoros nesse horário aumente. Esse fenômeno pode ser comparado a um carro andando em uma rodovia, onde os flocos de neve, por exemplo, atingem com mais frequência a parte dianteira do veículo em relação à parte de trás.[32]
Por meio de fotografias e vídeos as observações se tornaram mais acuradas. Fotografias fornecem informações valiosas para determinação do radiante, da velocidade, da composição de meteoros e até a determinação do corpo celeste com o qual a chuva está relacionada.[33] As observações em vídeo são mais recentes (as primeiras observações automáticas foram feitas na Alemanha em 1999) e possuem uma série de vantagens em relação aos outros tipos de observação. Por meio de gravações são determinados vários parâmetros tais como o tempo, brilho, velocidade, curvas de luz e o espectro dos meteoros.[34]
Um tipo de observação indireta consiste em utilizar ondas de rádio para detectar meteoros. Quando o meteoro entra na atmosfera terrestre, deixa uma trilha de material ionizado que reflete as ondas de rádio, e as ondas resultantes dessa reflexão podem ser detectadas por outras estações de rádio a cerca de 2000 quilômetros de distância. A técnica tem se tornado popular entre observadores de meteoros amadores, que monitoram o sinal utilizando computadores. Com esse tipo de observação foram descobertas várias chuvas de meteoros que acontecem durante o dia.[35]

[editar] Organizações

Em 1988, foi criada a Organização Internacional de Meteoros (International Meteor Organization (IMO)), que é uma organização científica sem fins lucrativos que possui membros por todo o mundo. Os principais objetivos da IMO são o encorajamento, o suporte e a coordenação da detecção de meteoros para melhorar a qualidade de observações amadoras e espalhar os resultados das observações para que se faça uma análise global dos dados obtidos. Para atingir seus objetivos, a IMO distribui um jornal bimestral que contém os dados obtidos pelos seus membros bem como o resultado de análises e descobertas relacionadas aos meteoros.[36]
Outra organização importante é a Sociedade Americana de Meteoros (American Meteor Society (AMS)). Foi fundada em 1911 por Charles P. Olliver que convidou quinze membros para compor a sociedade.[37] Atualmente é uma instituição sem fins lucrativos composta por observadores e cientistas profissionais e amadores localizados principalmente nos Estados Unidos e Canadá, com o objetivo de estudar os fenômenos relacionados aos meteoros. A sede da sociedade está localizada no campos da Universidade Estadual de Nova York, na cidade de Geneseo. A AMS publica um jornal trimestral chamado Meteor Trails que consiste numa variedade de artigos sobre as observações recentes, cartas, calendários e outros materiais para os entusiastas.[38]

[editar] Chuvas de meteoros em outros corpos celestes

Meteoro fotografado em Marte pela sonda Spirit.
Qualquer outro corpo do sistema solar que possui atmosfera pode também ter chuvas de meteoros. Em Marte as chuvas de meteoros ocorrem em diferentes períodos em comparação com a Terra, e os meteoros se apresentam de uma forma diferente, por causa da composição da atmosfera.[39]
Assim como podemos prever as chuvas de meteoros na Terra, como Leônidas, podemos também prever quando as chuvas de meteoros vão acontecer em Marte ou em Vênus. Acreditamos que estrelas cadentes aparecem nesses planetas com brilho semelhante as que vemos na Terra. Entretanto, como não estamos em posição para assistir essas chuvas no céu marciano diretamente, temos que examinar os dados de satélite para procurar por evidências de partículas explodindo na alta atmosfera.
Dr. Apostolos Christou (cientista da NASA).[40]
Apesar da atmosfera marciana ter somente um por cento da densidade da atmosfera terrestre no nível do solo, nas camadas superiores onde os meteoroides explodem a densidade é bastante similar e, sendo assim, os efeitos são quase semelhantes. Somente a velocidade menor dos meteoroides por causa da maior distância do sol poderia reduzir o brilho dos meteoros. No dia 7 de março de 2004, a câmera panorâmica do veículo de exploração de MarteSpirit gravou um rastro luminoso que foi provavelmente produzido por um meteoro de uma chuva de meteoros marciana associada com o cometa 114P/Wiseman-Skiff. Uma forte chuva de meteoros dessa chuva era esperado em 20 de dezembro de 2007.[41]
O estudo das chuvas de meteoros marcianas pode melhorar o entendimento dos cometas da família jupiteriana,[nota 4] pois os cometas passam pela órbita de Marte com quatro vezes mais frequência do que na órbita da Terra e grande parte desses cometas são da família jupiteriana.[42] Quando um meteoro explode na atmosfera de um planeta, o metal contido nele é ionizado e forma um rastro de plasma. Na Terra, este rastro fica a cerca de 100 km da superfície e em Marte fica de 80 a 95 km de altitude. As chuvas de meteoros que acontecem no planeta vermelho são indiretamente detectadas através dos instrumentos da sonda Mars Global Surveyor, que monitora a densidade de elétrons nas camadas superiores da atmosfera do planeta.[40]